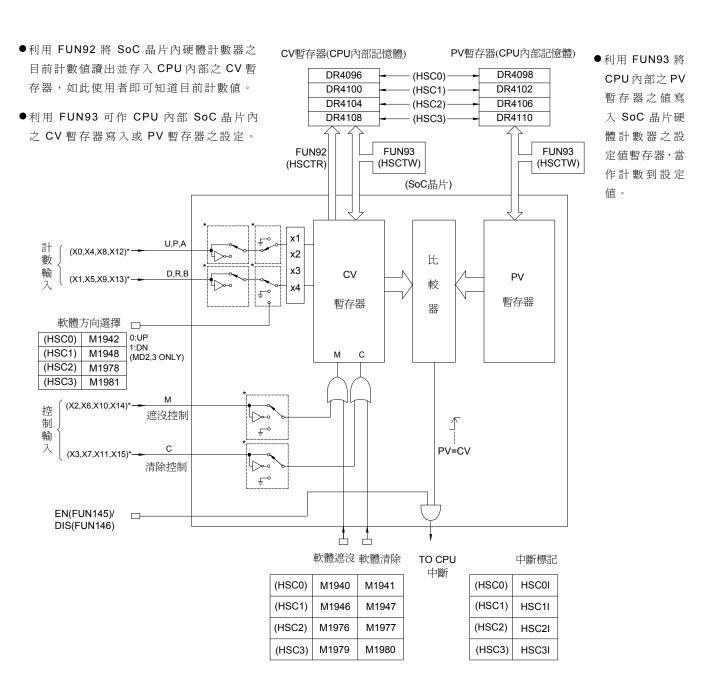
第 10 章: FBs-PLC 之高速計數器與高速計時器

10.1 FBs-PLC 之高速計數器

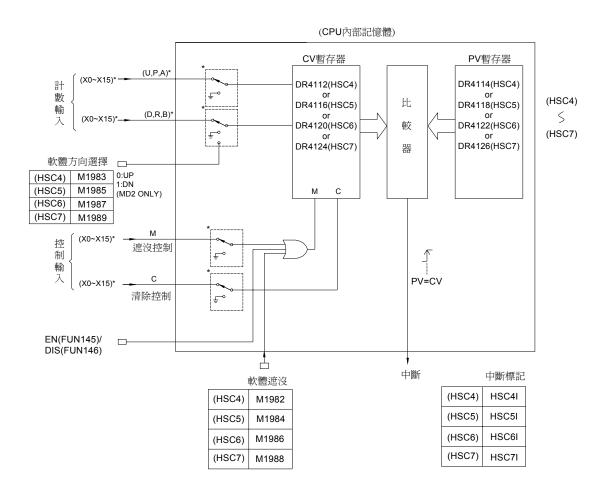
一般 PLC 之軟體計數器之計數頻率僅能達數十 Hz(視掃描時間而定),若超過將產生漏數甚至完全無法計數,此時必須使用高速計數器(High-Speed Counter 簡稱 HSC)才能勝任。一般 PLC 之高速計數器有兩種,一爲使用專用硬體電路作成之硬體高速計數器(Hardware High-Speed Counter 簡稱 HHSC),另一種是利用計數脈波正/負緣變化時發生中斷,而由 CPU 來判斷增減,並作計數之軟體高速計數器(Software High-Speed Counter 簡稱 SHSC)。FBs-PLC 各有 4 個 HHSC(在 SoC 晶片內)及 4 個 SHSC;其皆爲 32 位元高速計數器。

|10.1.1 FBs-PLC 高速計數器之計數模式|

FBs-PLC 之 4 個 HHSC 均具有 8 種計數模式可供選擇, 而 SHSC 則提供 3 種計數模式, 如下表所示:


計數模式 (MODE)			HHSC (HSC0~HSC3)	SHSC (HSC4~HSC7)	計 數 行 爲 波 形 圖 上數 (+1) 下數 (-1)
單相獨立	MD 0	U/D	0	0	U
	MD 1	U/D×2	0		
單相相關	MD 2	P/R	0	0	P R
	MD 3	P/R×2	0		P R
雙相相關	MD 4	A/B	0	0	A B
	MD 5	A/B×2	0		A B
	MD 6	A/B×3	0		A B
	MD 7	A/B×4	0		A B

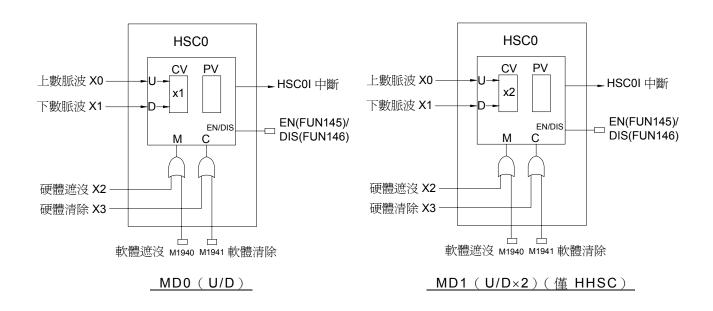
• 波形中正或負緣有上升或下降箭號(↑,↓)者表示發生計數(+1或-1)之處


10.2 FBs-PLC 高速計數器之系統架構圖

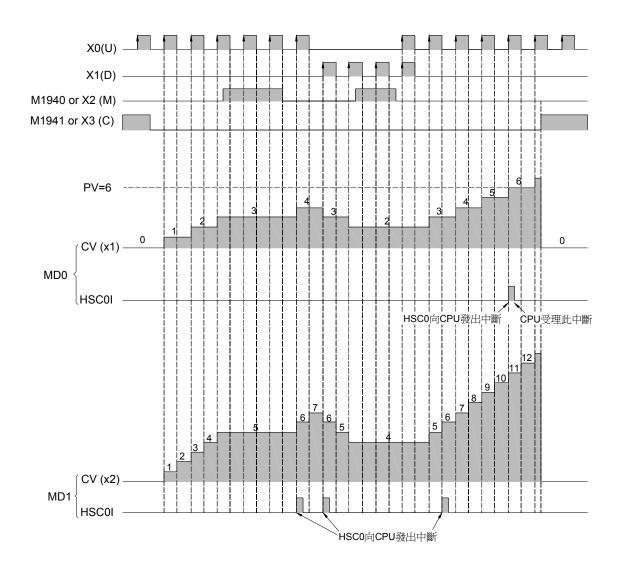
下圖爲 FBs-PLC 之 HHSC 及 SHSC 之系統結構圖,兩者均具有多重用途輸入及計數功能,有些功能是內建功能(例如 CV 暫存器號碼、PV 暫存器號碼、中斷標記名稱及軟體遮沒、清除、方向選擇之繼電器號碼)無需使用者作建構指定,有些則必須由使用者利用WinProladder或 FP-08 之系統模式下之第 5 項功能(Configuration)來建構該 HSC 之組態(例如 HSC 之用途選擇,計數模式,各功能輸入是否使用,極性是否反相,對應之輸入點號碼 Xn 之指定……等)。在下圖中標有 ** ** 記號者,表示此部份需由使用者來建構之。經建構指定之 8 種計數模式之細部結構與計數行爲,請參閱 10.2.1~10.2.3 小節之說明。

註:CV (Current Value),目前值;PV (Preset Value),設定值。

硬體高速計數器(HSC0~HSC3)之系統結構圖

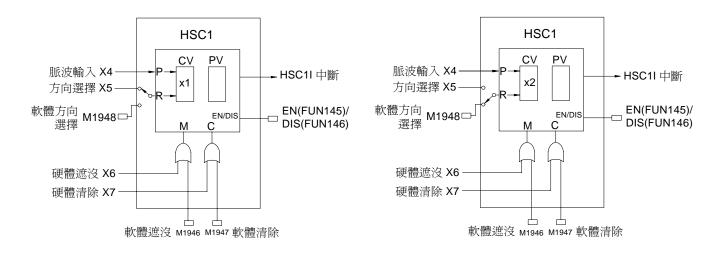

軟體高速計數器(HSC4~HSC7)之系統結構圖

- 上圖 HHSC 與 SHSC 之所有控制信號均內定爲 Active High(亦即在狀態爲 1 時發生作用, 0 無影響)。但 HHSC 之計數輸入(U, D, P, R, A, B)及控制輸入(M, C)均可作極性反相選擇,以匹配 Sensor 極性。
- 遮沒控制M(MASK)係指當此信號為 1 時,HSC 計數脈波將被遮沒不計數,HSC 內部狀態(CV,PV…)均保持不變。當 M 回到 "0",HSC 才能正常工作。有些 Sensor 則為致能(Enable)輸出,其功能正好和 MASK 相反,當 Enable=0 時,計數器將不計數,必須在 Enable 回到 1 時始能正常工作,此時您可利用 MASK 極性選擇倒相輸入,便可匹配具有 Enable 輸出之 Sensor。
- 清除控制 C(CLEAR)係指當此信號爲 1 時,HSC內部之 CV 暫存器將被清爲 0,且無法計數,一直要等到 C 回到 0 後,HSC 才由 0 開始計數。Ladder 程式亦可直接將 CV 暫存器(DR4112、DR4116、DR4120、DR4124)清爲 0,將目前計數值清除爲 0。
- FBs-PLC 之 4 組 HHSC 均在 SoC 晶片中,其 CV 暫存器和 PV 暫存器使用者是無法直接存取的,使用者能直接存取的是 CPU 內部記憶體中對應之 CV 暫存器(DR4096~DR4110)。理想上,晶片上之 CV 與 PV 暫存器內容値與 CPU 內部記憶體中之 CV 與 PV 暫存器之內容值應是同步更新,隨時均爲相同的,但因兩者分屬於不同之硬體電路,兩者之對應必須靠 CPU 來作載入或讀取。 CPU 可利用 FUN93 將目前値或設定值寫入到晶片內之 CV 暫存器(使 HHSC 由此初始值開始計數)或 PV 暫存器,而利用 FUN92 將晶片內 HHSC 之 CV 暫存器之目前計數值讀入並存放於 CPU 內部之 CV 暫存器。但因讀取動作只有在 FUN92 被執行到時才進行(亦即爲 "取樣"讀取),因此晶片中 HHSC 之 CV 值和 CPU 內部之 CV 值可能會有落差,尤其在計數頻率高時誤差更大。


- 當計數頻率不高或定位精度要求不高時,在主程式利用 FUN92 讀取目前計數值,然後再配合比較指令,即可作一般簡單之計數定位控制。
- 當定位精度要求較高或多段計數設定控制時,可在定時中斷處理副程式裡,利用 FUN92 較頻繁去讀取目前計數值,然後配合比較指令作較精緻之計數定位控制。
- ●當定位精度要求極高時,在計數前須先將預設之中斷值以 FUN93 寫入 SoC 晶片內 HHSC 之 PV 暫存器,等 HHSC 之 CV 計數值到達此預設值時, HHSC 內之硬體比較器將會在 CV=PV 瞬間,向 CPU 發出中斷,而能立即跳到中斷副程式中作及時之控制或處置。
- SHSC 則是利用中斷方式在計數輸入之上緣時向 CPU 發出中斷,再由 CPU 判斷其爲加 1 或減 1,而直接在其內部 CV 暫存器上更新(亦即 CPU 內部之 CV 暫存器本身即爲 SHSC 之 CV 暫存器,故無需 FUN92、FUN93 指令)。在每次 CV 更新之同時,CPU 均會比較是否與其 PV 暫存器值相等,若是,立即跳到其對應之 SHSC 之中斷服務程式作及時之處理。因 SHSC 之每一計數輸入及控制輸入之變化都會造成 CPU 中斷,當計數頻率高時,將嚴重佔用 CPU 時間,大幅降低 CPU 之反應速度,甚至造成 Watchdog Time-out,使 PLC 停機。因此應儘量優先使用 HHSC,如需使用 SHSC,所有 SHSC 之輸入頻率總和請勿超過 5KHz。
- 所有軟體遮沒、清除、方向控制等特殊繼電器之控制時效均受限於 PLC 掃描時間,因此並不適合在高精度要求 HSC 之即時控制(主要當作在 HSC 運作前之初始設定)。若需作即時控制,請用硬體控制輸入或使用 FUN145(EN)、FUN146(DIS)、FUN92(HSCTR)、FUN93(HSCTW)等指令來控制。
- 所有 HSC 均附加有 Enable (FUN145)及 Disable (FUN146)功能,HSC 在 Enable 下能計數且計數到時可產生中斷信號運作;在 Disable 時,則 HHSC 雖能繼續計數,但計數到時,不會產生中斷,而 SHSC 則保持在停滯狀態。在 Configure HSC 時 HSC 是內定爲 Enable,程式中可依控制需要隨時 Disable 或 Enable。

10.2.1 單相獨立之上/下數高速計數器(MD0,MD1)

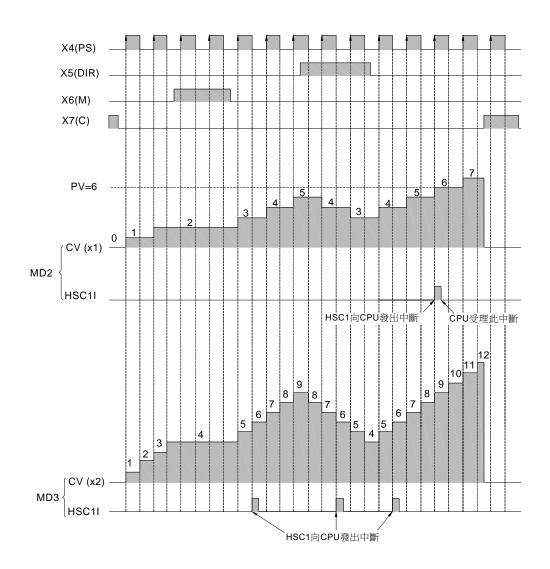
單相獨立上/下數高速計數器具有兩個獨立之上數脈波輸入(U)和下數脈波輸入(D),兩者彼此獨立沒有相位關係,各自於其脈波輸入之正緣∫(MD1 則爲正/負緣兩者)到來時將 CV 値加 1 (U) 或減 1 (D),即使 U 和 D 脈波正緣 (負緣)同時發生亦允許(此時相互抵消),兩種模式均內建有軟體遮沒和軟體清除(SHSC 無軟體清除),當控制功能不使用時,使其狀態(如本例之 M1940、M1941)保持爲 "0"即可。除內建之軟體遮沒與軟體清除外,尚可規劃使用硬體遮沒與硬體清除控制。軟/硬體遮沒是先 OR 起來,再接到 HSC 之遮沒控制 M 接腳,軟/硬體清除亦相同方式。下圖係以 HSC0 爲例分別建構爲 MD0 與 MD1 HSC 之功能示意圖。



下圖係以本例之兩模式之 HSC,在設定值 PV 設為 6 時之計數與控制關係波形圖。

10.2.2 單相相關之上/下數高速計數器 (MD2, MD3)

單相相關上/下數高速計數器,僅有一個計數脈波輸入 P (Pulse),而其上/下數則必須由另一個方向輸入 R (Direction) 來決定在計數脈波正緣 (MD3 時則正/負緣兩者) 到來時 CV 值是要+1 (R=0) 或-1 (R=1)。 MD2 和 MD3 之計數行爲類似,差異只在於 MD2 只在 PS 脈波之正緣計數 (+1 或-1),而 MD3 則在 PS 之正/負緣均計數 (亦即 MD3 之計數值爲 MD2 之兩倍)。兩種模式均內建有軟體遮沒及軟體清除 (SHSC 無軟體清除),當控制功能不使用時必須使其狀態 (如本例之 M1946 與 M1947) 保持爲 0。除內建之軟體遮沒與軟體清除外,尚可建構使用硬體遮沒與硬體清除控制,軟/硬體遮沒是先 OR 起來,再接至HSC 之遮沒控制 M 接腳,軟/硬體清除亦同方式,以下爲將 HSC1 分別建構爲 MD2 與 MD3 HSC 之功能示意圖。



MD2 (P/R)

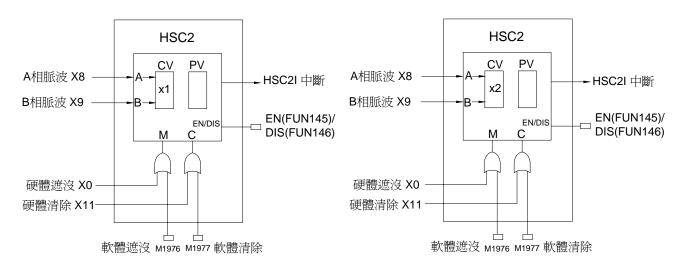
MD3 (P/R×2)(僅 HHSC)

HHSC 工作在 MD2 或 MD3 模式時,可選擇由外界輸入(如本例之 X5)來作方向選擇或由 CPU內部之特殊繼電器(如本例之 M1948)來作方向選擇。SHSC 工作在 MD2 模式時,必須透過 CPU內部之特殊繼電器來做方向選擇。

下圖爲本例之兩模式之 HSC 在設定值 PV 爲 6 時之計數與控制關係波形圖。

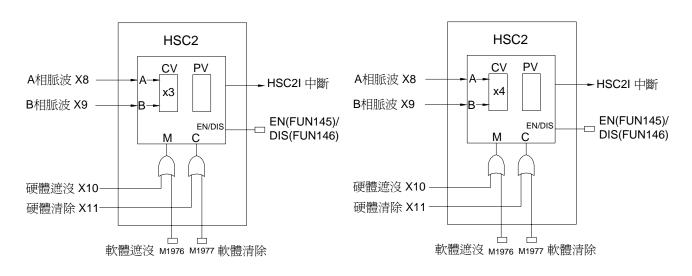
10.2.3 雙相高速計數器 (MD4, MD5, MD6, MD7)

雙相高速計數器具有 A 相與 B 相兩個脈波輸入,其計數值之+1 或-1,係以兩者之相位關係作判斷,亦即爲兩相相關之計數。若 A 相超前 B 相則 CV 值+1,反之則-1。雙相 HSC 之四種模式 MD4 (A/B)、MD5 (A/B×2)、MD6 (A/B×3)、MD7 (A/B×4) 之計數行爲均相似,其差異在於:

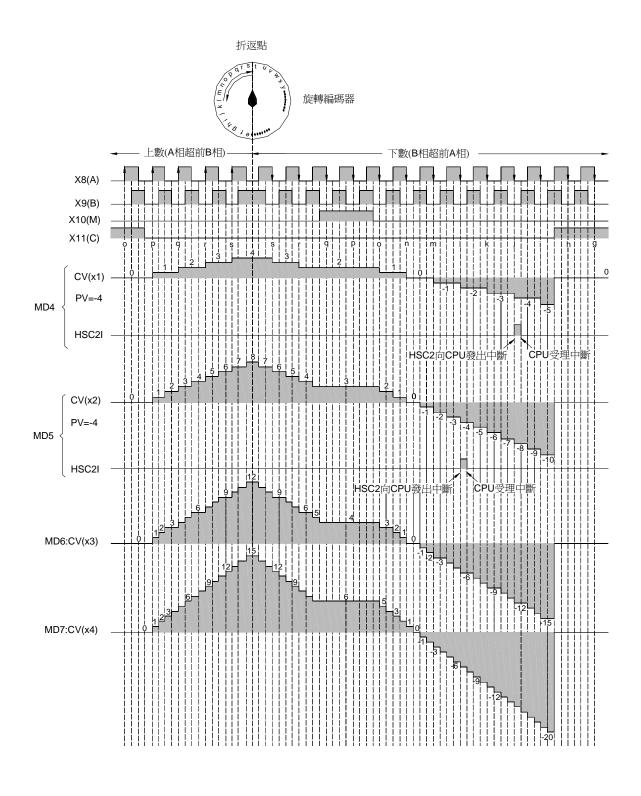

①MD4(A/B) :在 A 超前 B 時在 A 之正緣+1,而在 A 落後 B 時在 A 之負緣-1。

②MD5(A/B×2):在A超前B時在A之正/負緣均+1,而在A落後B時在A之正/負緣均-1(計數值爲MD4之2倍)。

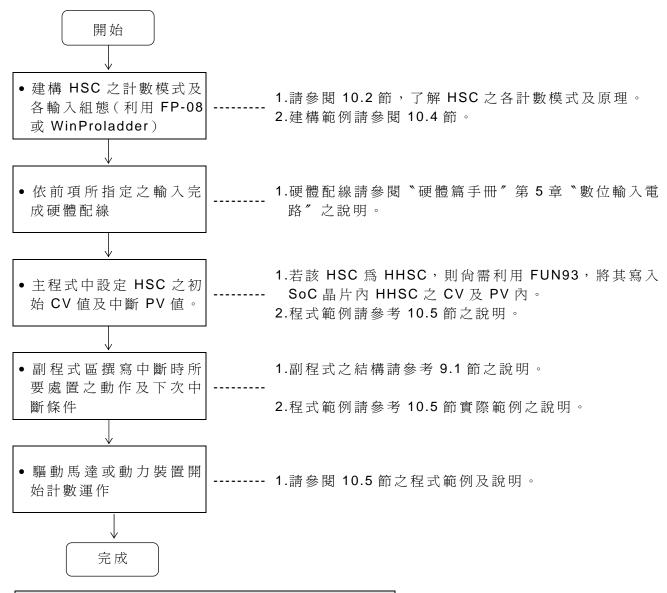
③MD6(A/B×3):在A超前B時在A之正/負緣及B之正緣均+1,而在A落後B時在A 之正/負緣及B之負緣均-1(計數值爲MD4之3倍)。


④MD7(A/B×4):在A超前B時在A及B之正/負緣均+1,而在A落後B時在A及B之正/負緣均-1(計數值爲MD4之4倍)。

如同其他模式 MD4~MD7 HSC 均內建有軟體遮沒和軟體清除(SHSC 無軟體清除),當控制功能不用時必須使其狀態(如本例之 M1976 和 M1977)保持為 "0"。同時使用者亦可建構硬體遮沒與硬體清除控制。軟/硬體遮沒是先 OR 起來,再接到 HSC 之遮沒控制 M 接腳,軟/硬體清除亦同方式。下圖係以 HSC2 爲例分別建構爲 MD4、MD5、MD6、MD7 等4 種模式之 HSC 功能示意圖。


MD4 (A/B)

MD5 (A/B×2) (僅 HHSC)

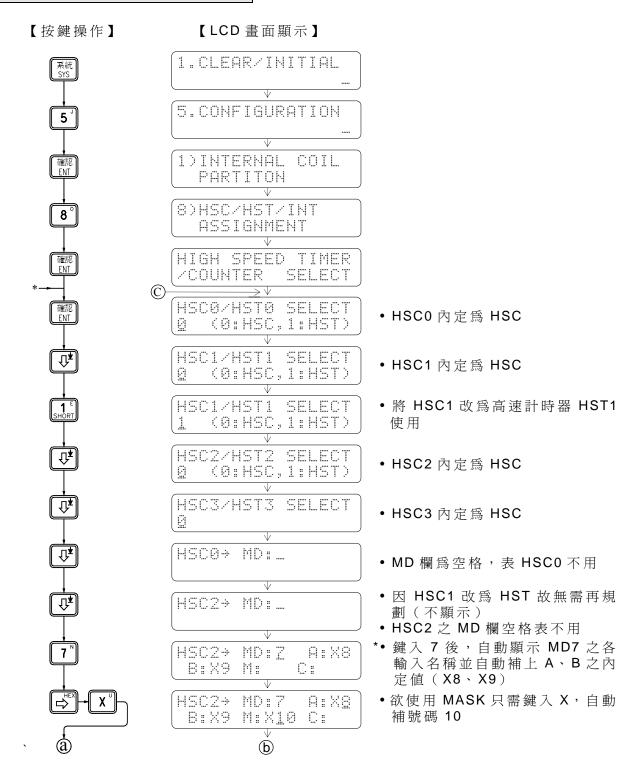


MD6 (A/B×3)(僅 HHSC)

MD7 (A/B×4)(僅 HHSC)

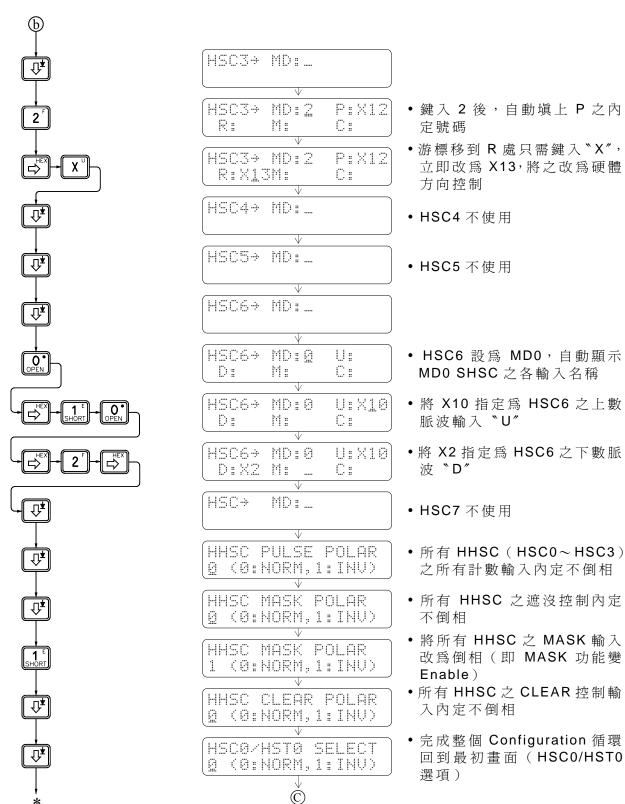
10.3 使用 FBs-PLC 高速計數器之步驟

10.4 HSC/HST 之建構 (Configuration)


|10.4.1 以 FP-08 作 HSC/HST 之建構|

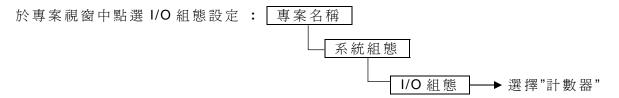
本節將以範例說明 HSC Configuration 之方法,在 HSC 之 Configuration 依序包括下列 5 項:

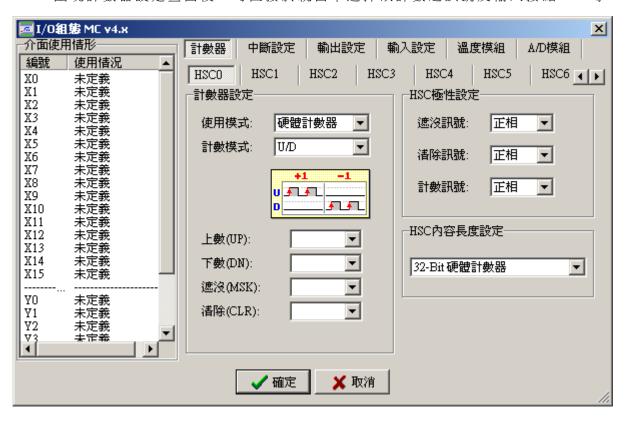
- ①HSC/HST 之選擇指定(僅 HHSC 有此選項功能),選擇為 HST 時無需再作任何建構指定。
- ②指定各 HSC 之計數模式 (MD0~MD7)。鍵入模式號碼後,FP-08 將自動顯示該模式 HSC 之計數與控制輸入名稱,並保留空格供使用者鍵入外界輸入點號碼 Xn,模式欄位爲空格時表示不使用該 HSC。
- ③指定各計數輸入(U,D,P,R,A,B)及控制輸入(M,C)欲使用與否(不使用使之保留空格,欲使用則需填入 Xn值,因 HHSC之各輸入之 Xn值均固定,因此只需鍵入字母 "X",FP-08 將自動補上內定之 n 號碼。


- ④選擇 HHSC 之計數輸入(U, D, P, R, A, B) 倒相與否,以匹配 Encoder 極性 (0:不倒相, 1,倒相;內定值爲 0)。
- ⑤選擇 HHSC 之控制輸入 (M,C) 倒相與否,以匹配 Encoder 極性 (0:不倒相,1:倒相;內定值爲0)。

以 FP-08 作上述①~⑤項建構之範例

【按鍵操作】


【LCD畫面顯示】


- 任何欄位爲空格(不輸入任何值),則表示不使用該 HSC 或該輸入。
- 上例中 "PULSE"表 HHSC 之各種 "計數輸入",即 U,D或 P,R或 A,B。
- "POLAR"表極性 "POLARITY",亦即倒相或不倒相之選擇。

● HHSC 之各計數輸入及控制輸入之輸入點號碼均爲固定,故在上例 Configuration 範例中, 對 HHSC 之各輸入僅需鍵入 "X"字母表示欲使用該輸入即可,FP-08 或 WinProladder 會自動補上內定之 X 號碼,同時不容許更改。而 SHSC 之各計數或控制輸入則需由使用 者在 X0~X15 間自由指定,因此 SHSC 之輸入點號碼必須鍵入 "X"及號碼 n 始爲完整。

10.4.2 以 WinProladder 作 HSC/HST 之建構

● 出現計數器設定畫面後,可直接於視窗中選擇欲計數之訊號及輸入接點……等。

[計數器設定]區域:

● | 使用模式 | 欄位: 可選擇硬體計數器或硬體計時器。

● | 計數模式 | 欄位 : 可選擇欲計數之工作模式,有 U/D、P/R、A/B……等。

● | 上數(UP) | 欄位 : 選擇上數訊號之輸入,若計數模式為 P/R,則此欄位為|脈波(PS)|

; 若計數模式爲 A/B,則此欄位爲 A 相

● | 下數(DN) | 欄位 :選擇下數訊號之輸入,若計數模式為 P/R,則此欄位為 方向(DIR)

; 若計數模式爲 A/B,則此欄位爲 B 相

■ | 遮沒(MSK) | 欄位 : 選擇遮沒訊號之輸入。

■ 清除(CLR) | 欄位 : 選擇清除訊號之輸入。

[HSC 極性設定]區域:

● 遮沒訊號 欄位: 決定遮沒訊號爲正相或是倒相。

● | 清除訊號 | 欄位 : 決定清除訊號爲正相或是倒相。

◆ 計數訊號 欄位 : 決定計數訊號爲正相或是倒相。

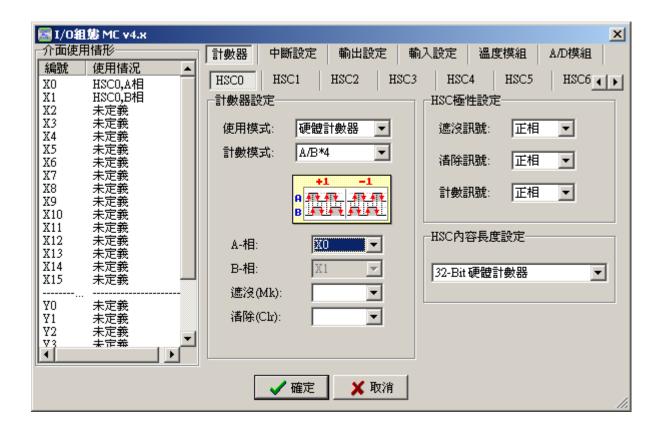
[HSC 內容長度設定]區域:

● 可以選擇的模式有以雙字元組(32-Bit 硬體計數器)來存放計數值或1 字元組存放計數值, 1 字元組當做循環計數器(16-Bit Timer+16-Bit Counter)兩種。客戶可依自己的需求應用之。

以下將FBs-PLC之HHSC與SHSC所內定或可選擇之輸入點號碼、軟體遮沒、清除、方向選擇等相關號碼彙整如下表。

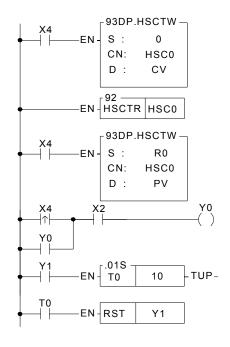
栈	幾種	MA/MC/MN										
容許	類 之號碼 別	HHSC				SHSC						
HSC 相關1	信號	HSC0	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7			
CV 暫	存器號碼	DR4096	DR4100	DR4104	DR4108	DR4112	DR4116	DR4120	DR4124			
PV 暫	存器號碼	DR4098	DR4102	DR4106	DR4110	DR4114	DR4118	DR4122	DR4126			
計數	U或P或A	X0	X1/X4	X4/X5/X8	X5/X12	X0~X15	X0~X15	X0~X15	X0~X15			
輸入	D或R或B	X1	X5	Х9	X13	X0~X15*	X0~X15*	X0~X15*	X0∼X15*			
控制	М	X2	X6	X10	X14	X0~X15	X0~X15	X0~X15	X0~X15			
輸入	С	Х3	X7	X11	X15	X0~X15	X0~X15	X0~X15	X0~X15			
軟體退	庶沒繼電器	M1940	M1946	M1976	M1979	M1982	M1984	M1986	M1988			
軟體清	青除繼電器	M1941	M1947	M1977	M1980	直接清除 CV 暫存器即可						
	方向選擇 MD2,3)	M1942	M1948	M1978	M1981	M1983	M1985	M1987	M1989			
中斷副標記名	削程式 名稱	HSC0I	HSC1I	HSC2I	HSC3I	HSC4I	HSC5I	HSC6I	HSC7I			

- *: SHSC 工作於 MD2(P/R)時,方向選擇由特殊繼電器 M1983、M1985、M1987、M1989 來決定。
- 當工作於雙向模式時(HHSC 為 MD4~MD7、SHSC 為 MD4),輸入點必須以連續號碼配對使用,並且以偶數號碼為 A 相輸入(例 X4),奇數號碼為 B 相輸入(例 X5)。
- 上表中之 X0~ X15 輸入點只能被指定一次(亦即只能當作一種功能),不能重覆使用。
- FBs MN 之 HHSC 最高計數頻率單相最高可達 920KHz,雙相最高可達到 460KHz。
- FBs MC 機種之 HHSC 計數頻率單相最高可達 200KHz, 雙相最高可達到 100KHz。
- FBs MA機種之 HHSC 計數頻率單相最高可達 20KHz,雙相最高可達 10KHz。
- 軟體高速計數器之輸入頻率總和不得大於 5KHz,頻率愈高愈佔系統時間,掃描時間會暴增!

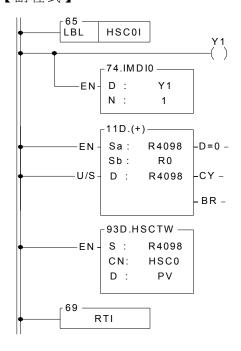

10.5 高速計數器之應用範例

範例 1 · 係利用高速計數器作等長度之截斷控制

機構



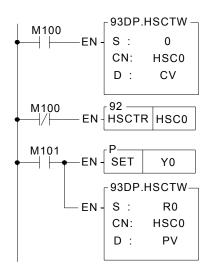
HSC 建構(Configuration) (將 HSC0 設為 MD7 以提高截斷解析度 4 倍)


控制程式

【主程式】

- 利用 FUN93 將 SoC 晶片內 HSC0 之 CV 暫存 器及目前値暫存器 DR4096 清為0 CN=0 表 HSC0 D=0 表 CV
- 利用 FUN92 將 SoC 晶片內 HSC0 之 CV 暫存 器之計數值讀出(存入 DR4096)
- 將計數行程 DR0 利用 FUN93 將其值寫入 SoC 晶片內 HSC0 之 PV 暫存器及寫入 DR4098 設 定值暫存器 CN=0 表 HSC0 D=1 表 PV
- 起動馬達
- 截斷器 Y1 ON 0.1 秒

【副程式】

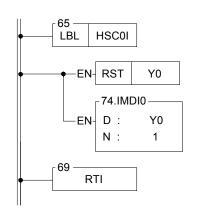

- 當 SoC 晶片內 HSCO 之 CV=PV 時,硬體自動執行此標名爲 HSCOI 之中斷副程式
- 計數到時,將 Y1 ON (截斷物料)
- 將 Y1 立即輸出,才能減少因掃描時間所引起 之誤差
- 計算出新的行程,並載入 HSC0 之 PV

【說明】

- 2.當 CV 值達 PV 值時,啓動裁刀並將 PV 值再加長度值 DR0 重新載入 HSC0 之 PV 去後返回。
- 3. 當物料捲完時,缺料檢知 X2 ON,馬達停止。

範例 2 · 固定行程高速計數到中斷立即處理範例

【主程式】


●當 M100 由 0→1 時,利用 FUN93 將 SoC 晶片 內 HSC0 本體之 CV 以及目前値暫存器 DR4096 歸零

CN = 0 , 代表 HSC0 D = 0 , 代表 CV

- 利用 FUN92 將 SoC 晶片內 HSC0 之目前計數 值讀出,並存入目前值暫存器 DR4096 CN=0,代表 HSC0
- •當 M101 由 0→1 時, 啓動 Y0 ON (開始運轉)
- 利用 FUN93 將設定値暫存器(DR0)之內容寫 入 SoC 晶片內 HSC0 之 PV,當作計數到中斷 設定值。

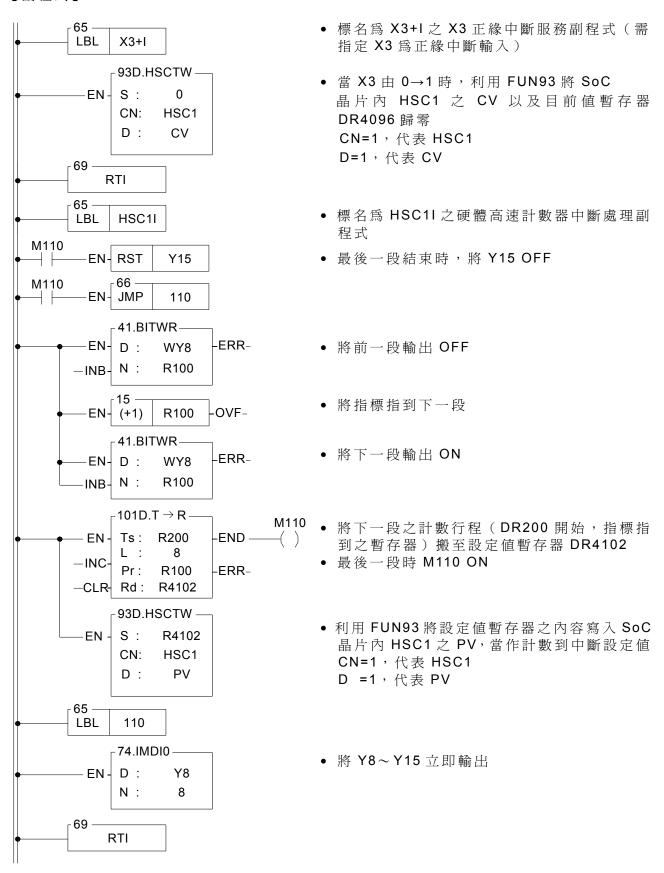
CN=0,代表 HSC0 D =1,代表 PV

【副程式】

- 標名為 HSC0I 之硬體高速計數器中斷服務副 程式
- 計數到時,將 Y0 OFF(停止運轉)
- 將 Y0 立即輸出,才能立即停止運轉 (否則 Y0 會有掃描時間之輸出延遲)

範例 3·多段行程高速計數到中斷立即處理範例

【主程式】



- 利用 FUN92 將 SoC 晶片內 HSC1 之目前値 讀出,並存入目前値暫存器 DR4100 CN=1,代表 HSC1
- 當 M101 由 0→1 時,將指標暫存器清除為 0
- 將最後一段旗標清除為 OFF
- 利用 FUN93 將計數行程 DR200(第 0 段) 之內容寫入 SoC 晶片內 HSC1 之 PV,當作 計數到中斷設定值

CN=1,代表 HSC1 D =1,代表 PV

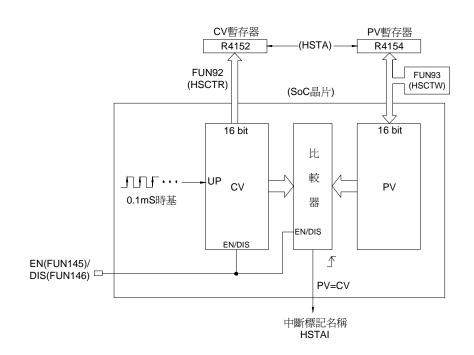
- 將 Y8~Y15 清除爲 OFF
- 設定 Y8 ON,表示目前正位於第 0 段
- Y8~Y15 立即輸出

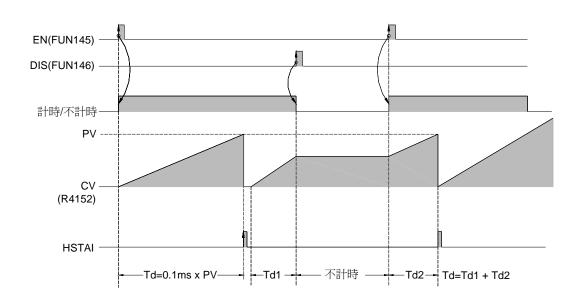
【副程式】

10.6 FBs-PLC 之高速計時器

一般 PLC 計時器之計時單位(時基)最小只能達 1mS,且需加上掃描時間之誤差,因此對需要較精密之計時(如利用計時器配合 HSC 作成頻率計)便無法達成,必須使用高速計時器(High-Speed Timer 簡稱 HST)才能勝任。

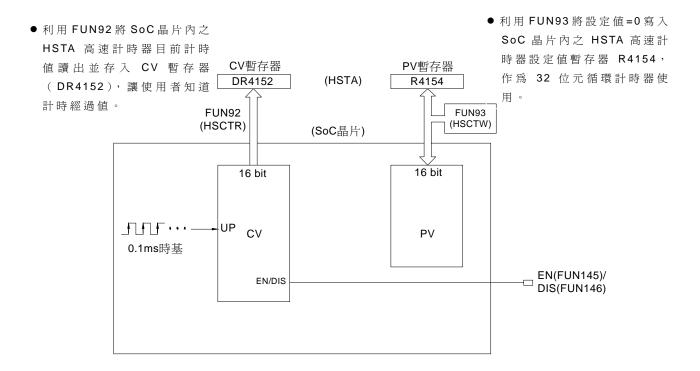
FBs-PLC 內建有一個 16 位元/0.1mS 時基(Time base)之高速計時器(HSTA)。另外,如前述 HHSC 之 4 個 32 位元高速計數器(HSC0~HSC3)均可轉化為 32 位元/0.1ms 時基之高速計時器(HST0~HST3)使用,因此 FBs-PLC 最多可有 5 個高速計時器。如同 HSC及 INT,所有 HST 均可以 EN(FUN145)及 DIS(FUN146)指令將其開啟或關閉(內定為EN 開啟)。以下就 HSTA與 HST0~HST3分別敘述如下。

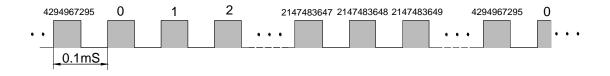

大部份 PLC 計時器之最小時基為 10mS,即使有部份 PLC 能提供 1mS 時基之計時器,也因 PLC 掃描時間之誤差,使其 1mS 之時基失去意義(例如雖時間為 1mS,但若掃描時間為 10mS,總誤差仍超過 10mS),因此無法應用在需要高精度之計時應用。FBs-PLC 之時基為 0.1mS,且其 Time up(計時到)係以中斷發出,因此無掃描時間誤差,較之一般 PLC 之計時器,其精度提高 100 倍,可使用許多需精密計時之應用。


10.6.1 HSTA 高速計時器

HSTA 是內建於 SoC 晶片內之 16 位元硬體計時器,因此如同 HHSC 一般必須利用 FUN93 (HSCTW) 指令將計時設定値寫入到晶片內 HSTA 之 PV 去,而 CV 之讀出則使用 FUN92 (HSCTR)。 HSTA 可當成兩種功能不同之計時器,當其 PV 値≥2 時,FBs-PLC 會將 HSTA 當作一般標準功能之 16 位元延遲計時器 (Delay Timer);當 PV 值=0 時,則將 HSTA 當作 32 位元之循環計時器 (Cyclic Timer)。

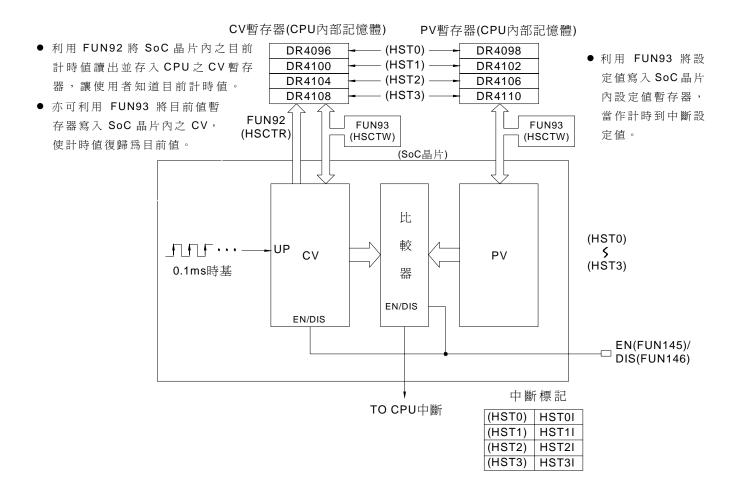
A. HSTA 16 位元高速延遲計時器 (定時中斷計時器)


延遲計時器是在 HSTA 計時開始起,延遲 PV×0.1mS 之時間後發出中斷。因 HSTA 當延遲計時器時爲 16 位元,故其 PV 值可設爲 0002H~FFFFH(無正負號之 65535),亦即可設之延遲時間爲 0.2mS~6.5535 秒,其功能使用方法和一般延遲計時器一樣,差異只是 HSTA 之時基較精細,且計時到(Time-Up)時,將立即發出中斷,計時精度相差甚大。下圖爲 HSTA 當作延遲計時器時之結構圖。詳細功能及使用方法請參考 10.6.3 小節之程式範例。



B. HSTA 32 位元循環計時器

所謂循環計時器是該計時器每間隔固定時間即將目前計時值加 1,而永遠不停地上數循環計時。其 CV 值由 0,1,2……2147483647,2147483648,2147483649,……4294967295,0,1,2……週而復始地循環(因時基爲 0.1mS,CV 值×0.1mS 即爲其累計之時間值)。實質上,循環計時器爲一恒久運轉之 0.1mS 時基之上數循環計時時鐘,可供任兩事件(Event)發生時讀取,而求得兩事件發生之間隔時間。下圖 B 爲 HSTA 當作 32 位元循環計時器時之結構圖,如圖示,循環計時器 PV=0 時,不會發出中斷,欲得知計時值必須利用 FUN92 將之自 SoC 晶片讀取 CV 值再存放到 PLC 內部之 32 位元 CV 暫存器(DR4152)中。循環計時器典型之應用是可作較準確之轉速偵測,在轉速變化極大或極低場合下作轉速偵測,請參考第 10.6.3 小節範例說明。



10.6.2 HST0~HST3 高速計時器

|A.HST0~HST3 高速延遲計時器 | (定時中斷時器)

HHSC (HSC0~HSC3) 可將之規劃爲 HST0~HST3 4 個 32 位元之高速延遲計時器,其功能及時基和 16 位元之 HSTA 延遲計時器完全一樣,差異僅在 HST0~HST3 爲 32 位元。將 HHSC 規劃爲 HST 僅需在 WinProladder 或 FP-08 之系統模式下之 "Configuration"功能下之第 8 項 "HSC/HST/INT"指定項下之 HSC/HST 選項中選擇 "1"即完成,請參考 10.4 節 "HSC/HST 之 Configuration"之範例(在該範例中係將 HSC1 建構爲 HST1)。下圖爲 HHSC 規劃爲 HST 高速延遲計時器之功能結構圖。其使用方法同 HSTA 16bit 高速延遲計時器,請參閱 10.6.4 小節之程式範例。

B.HST0~HST3 32 位元循環計時器

將 HHSC(HSC0~HSC3)視需要規劃爲 HST0~HST3 等 32 位元計時器。每間隔 0.1mS,SoC 晶片內之目前計時值暫存器會加 1;使用者可利用 FUN92 指令將 SoC 晶片內之目前計時值讀出並存入 CPU 之 CV 暫存器(DR4096、DR4100、DR4104、DR4108)。因此 CPU 之 CV 暫存器內容即爲 0,1,2,……7FFFFFFFH,80000000H,……FFFFFFFH,0,1,……等 32 位元之變化值。利用二事件間之間隔時間計算技巧,可得到無限多個 0.1mS 之 32 位元計時器。

10.6.3 高速計時器 HSTA 之使用範例

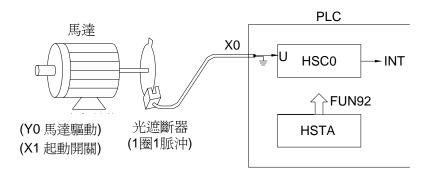
範例 1·HSTA 當作 32 位元循環計時器

 利用 FUN93 將 SoC 晶片內 HSTA 之 PV 設定為 0 (當作循環計數器用)

CN=4,代表 HSTA

D=1,代表 PV

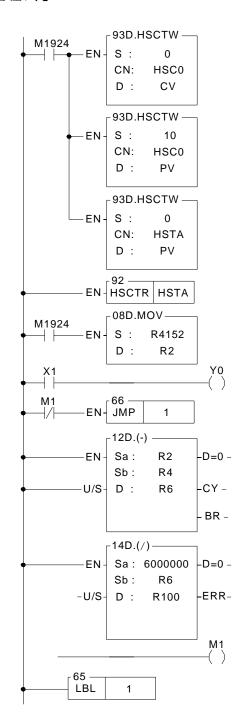
 利用 FUN 92 將 SoC 晶片內 HSTA 之目前計時値 讀出並存入 DR4152


• CN=4,代表 HSTA

範例 2. 循環計時器之應用例

本例以 HSTA 當作循環計時器,配合 HSCO,以每累積 10 個脈沖發出一次中斷,讀取 累積該 10 次脈沖所歷經之時間,而反向地求出 RPM(脈沖數固定,時間變化)。

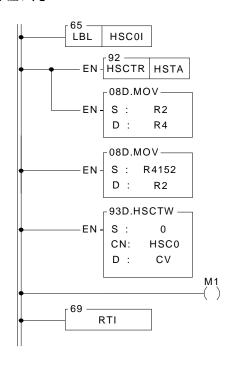
註:本例適合高速 RPM 應用 (300~6000RPM),不適合低速 RPM (低速時,RPM 值 更新太慢)。


機構

HSC 與 HST 之建構

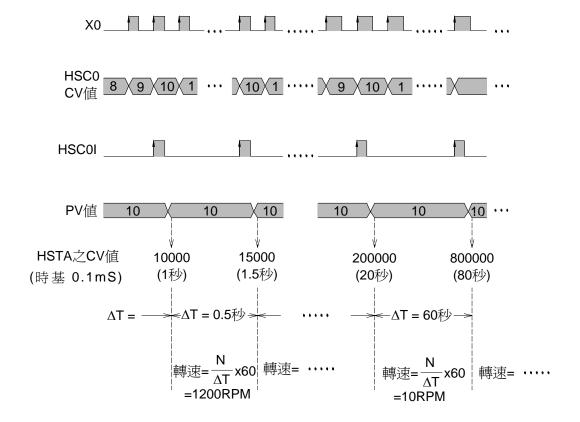
①因 HSTA 爲內建,無需任何建構,只要寫入 PV = 0 即可將之變成 32 位元循環計時器。 ②配合光遮斷器,將 HSC0 設爲單輸入之上數計數器 (MD0,但只使用 U 輸入)其他設定(計數輸入與控制輸入極性)均爲內定(不倒相),不必更動。

【主程式】

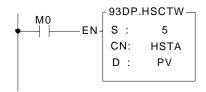

- 利用 FUN93 將 SoC 晶片內之目前値暫存器 計數歸零;
 FUN93 之 CN=0 表 HSC0; D=0 表 CV
- 利用 FUN93 將 10 寫入 SoC 晶片內之設定値 暫存器,當作計數到中斷値;
 FUN93 之 CN=0 表 HSC0; D=1 表 PV
- 將 0 利用 FUN93 寫入 SoC 晶片內之設定値 暫存器,將 HSTA 規劃爲 32 位元循環計時器; FUN93 之 CN=4 表 HSTA; D=1 表 PV
- 讀取目前計時值並存放至 DR4152
- HSTA 之 CV 暫存器初値存入 DR2

- 求出 HSC0 每次中斷的間隔時間 △T(DR6×0.1mS)
- 轉速 = $\frac{N}{\Delta T} \times 60$ RPM

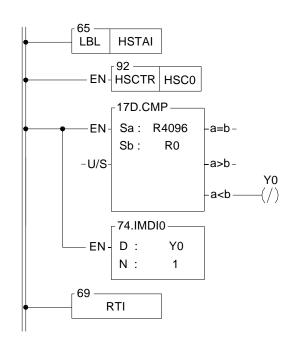
$$N=10, \triangle T = \triangle CV \times 0.1 mS = \frac{(此次CV - 前次CV)}{10000}$$
秒


- ,故轉速 = $\frac{6000000}{\Delta CV}$ RPM
- R100=RPM
- 清除 RPM 計算旗標(將 M1 清除爲 0)

【副程式】


- HSC0 每累計 10 個脈沖,硬體即自動執行此中斷副程式
- 讀取 HSTA 之 CV 値

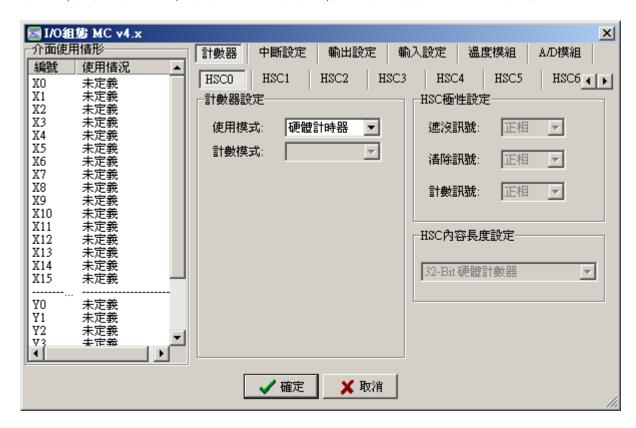
- 將目前計數值復歸爲 0
- M1=ON, RPM 計算旗標


範例 3·HSTA 當作定時中斷計時器程式

【主程式】

- 設定定時中斷之時間; S=5 代表每 0.5mS 執行標名為 HSTAI 之定時中斷服務副程式
- 利用 FUN93 將設定值寫入 SoC 晶片內 HSTA 之 PV,當作計時到中斷設定值 CN=4,代表 HSTA D=1,代表 PV

【副程式】


- 標名為 HSTA 之定時中斷服務副程式
- 每 0.5mS 讀取硬體高速計數器 HSC0 之目前 計數值,並存放於 DR4096
- 判斷目前計數值是否大於等於 DR0,如是,則 Y0 ON
- 將 Y0 立即輸出,才能達到高速輸出反應 (否則 Y0 會有掃描時間之延遲)

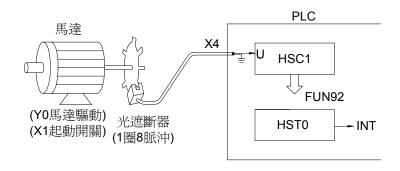
10.6.4 HST0~HST3 高速計時器使用範例

HSC 與 HST 之建構(使用 WinProladder)

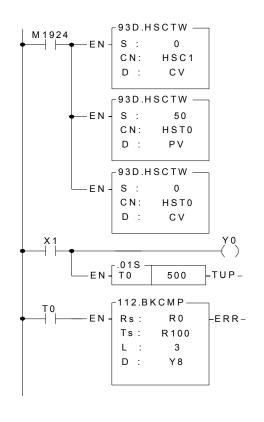
於專案視窗中點選 I/O 組態設定 : 專案名稱 系統組態 系統組態 I/O 組態 → 選擇"計數器"

- .出現計數器設定畫面後,於 使用模式 欄位點選 "硬體計時器"選項即可將 HHSC(硬體高速計數器)建構爲 HHT(硬體高速延遲計時器)。
- 使用者並不需要去建構 HSTA,因為 HSTA 本身即為內建的。只有要將 HHSC(硬體高速 計數器)拿來當做 HHT(硬體高速延遲計時器)使用時,才需以上述方式建構之。

HSC 與 HST 之建構(使用 FP-08) |

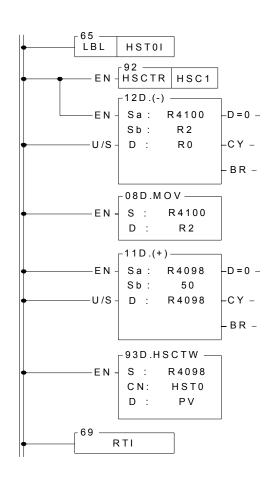


• 其他設定(計數輸入,控制輸入極性)均爲內定(不倒相),不必更動。


範例 1 · 延遲計時器之應用例

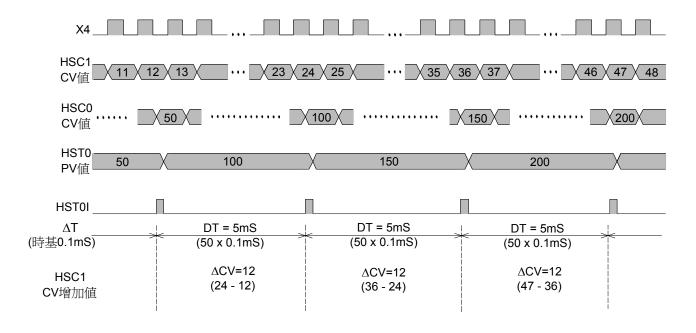
本例將 HSC0 高速計數器規劃爲 HST0 延遲計時器,同時以 HSC1 高速計數器連接自動木工鑽床之轉動馬達以其旋轉圈數,於每一固定時間週期即發出中斷,讀取在此週期內所計數到之馬達回轉圈數,以未加載(空轉未作鑽孔動作)時之轉數,比較當鑽頭下壓(鑽孔)時之速度變化,而能得知鑽頭狀況;因馬達在鑽頭正常(銳利)時之阻力較小,轉速適中,而在鑽頭變鈍時,阻力較大,轉速變慢,而在鑽頭折斷時阻力無,轉速將同空轉速度,是爲最快,因快、中、慢速之差異通常不大,若以一般計時器取樣檢知,因誤差高達數十 mS,光是誤差值就超過快、中、慢速之差異,根本無法判知速度變化,但以 0.1mS 高速計時器配合中斷,即能以相當低之成本,達到能檢知鑽頭正常、變鈍或折斷,而能及換頭警示或停機更換之動作。【時間固定,脈沖數變化】

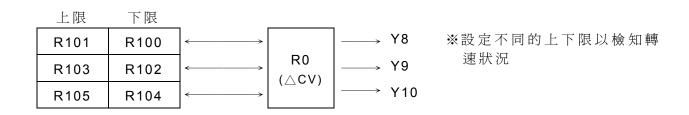
機構


【主程式】

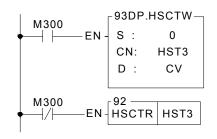
- 利用 FUN93 將 SoC 晶片內之目前値暫存器清除為 0
 FUN93 之 CN=1表 HSC1; D=0表 CV
- HST0 之 PV 值設為 50,即每隔 5mS (50×0.1mS)中斷一次
- HST0 之 CV 暫存器初值為 0
- 起動馬達 5 秒後才利用 FUN112 比較鑽 頭轉速狀況

R0:每隔 5mS 取得 HST1 之脈波數

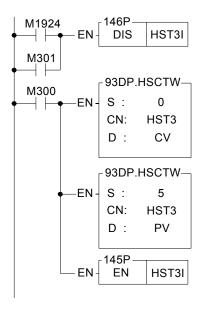

【副程式】



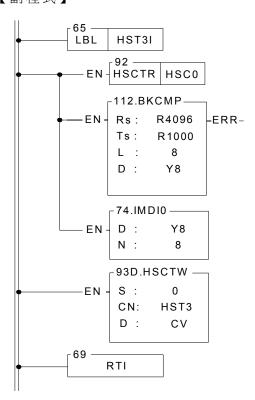
- 每隔 5mS 硬體即自動執行一次此副程式
- 讀取 HSC1 之目前計數值並存放於 DR4100
- 求取此次 5mS內 HSC1 CV 之增加值,並存入 DR0(在實用上 R1=0)


• 計算 HST0 之新 PV 値

【說明】假設正常時,鑽頭轉速為 18000RPM,而 1 轉會使光遮斷器產生 8 個脈沖,則 HSC1 之 U 腳頻率=18000/60×8=2400Hz,亦即 5mS 內會有 12 個脈沖。因此可利用 HST0 固定每隔 5mS 中斷一次,而讀取 HSC1 之 CV 值,便可知道轉速狀況。


範例 2 · 硬體高速計時器 HST3 當作 32 位元循環計時器

- 利用 FUN 92 將 SoC 晶片內 HST3 之目前計時值讀出並存入目前值暫存器 DR4108 (DR4108 之值由 0,1,2,……,FFFFFFFF,0,1,2,……循環變化,單位爲 0.1mS) CN=3,代表 HST3


範例 3 · 硬體高速計時器 HST3 當作定時中斷計時器程式

【主程式】

- 開機或 M301 ON 時,禁止 HST3 發出定時中斷
- 設定定時中斷之時間; S=5,代表每 0.5mS 執行標記名稱爲 HST3I 之定時中斷服務副程式
- 利用 FUN93 將設定値寫入 SoC 晶片內 HST3 之 PV,當作計時到中斷設定値 CN=3,代表 HST3; D=1,代表 PV
- 啟動 HST3 定時中斷

【副程式】

- 標名爲 HST3I 之硬體高速計時器中斷服務副程式
- 每 0.5mS 讀取硬體高速計數器 HSC0 之目前計數值
- 判斷目前計數值落於電子凸輪之那一段,並將相 對應之輸出點 **ON**
- 將 Y8~Y15 立即輸出
- 利用 FUN93 將 SoC 晶片內 HST3 之 CV 歸零 CN=3,代表 HST3; D=0,代表 CV